
Data-driven Reduced Order Model for
hydroacoustic analysis of ship propellers

Akash Venkateshwaran∗, Ryozo Nagamune

I. ABSTRACT

In this study, we apply Dynamic Mode Decomposition
(DMD) methodologies to a hydroacoustic dataset featuring a
3D marine propeller. Utilizing a meshless Lagrangian solver
based on the reformulated vortex particle method (rVPM)
from FLOWUnsteady, we present the hydrodynamics of
propeller wake and a low-dimensional representation of the
flow fields through DMD analysis.

The results illustrate DMD’s capability to effectively cap-
ture spatiotemporal structures in the wake region. More-
over, a subsequent analysis post-processing acoustic signals,
utilizing truncated fluid dynamic fields as input, highlights
the effectiveness and precision of DMD data-driven reduced
models in the prediction of propeller acoustic noises.

II. INTRODUCTION

Maritime transport has always been a major part of inter-
national commercial transportation (more than 80%), as it
constitutes a highly cost-effective way of transferring large
volumes of cargo between continents. As a result, there has
been a dramatic upsurge in the volume of global seaborne
cargo and is anticipated to increase over the coming years [1].
The increase in maritime activity has prompted detrimental
consequences, including increased emissions of greenhouse
gases and chemical pollutants, incidents of marine mammal
collisions, and a rise in underwater noise pollution [2].

Modern ships have become the primary contributors to
anthropogenic noise in the oceans responsible for increasing
the ambient noise levels at low frequencies (10-1k Hz) at
a rate of 3 dB/decade up until the 1980s [3]. Consequently,
marine mammals pose a particular concern, given their heavy
reliance on hearing for essential activities. Underwater radi-
ated noise (URN) emitted by vessels can directly interfere
with their behavior, leading to disturbances in these activities
[4].

URN is influenced by factors, including vessel speed,
hull shape, propulsion system, and transit conditions. Noise
from a cavitating propeller outweighs other forms of pro-
peller noise, including singing, and other hydro-acoustic
noise originating from a ship [5]. The numerical simulation
of cavitation and the prediction of associated noise com-
monly employ viscous-based Computational Fluid Dynam-
ics (CFD) techniques such as RANS (Reynolds-averaged
Navier-Stokes), DES (Detached Eddy Simulation), and LES
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(Large Eddy Simulation) at model scale. Within these meth-
ods, LES and DES specifically enhance the resolution of
turbulent structures and cavitation dynamics, including tip
vortex cavitation and the propeller URN [6]. However, LES
requiring fine meshes and high timestep resolution, results
in increased computational expenses. Therefore, conducting
full-order simulations becomes unfeasible, particularly in
scenarios involving parametric analysis and shape optimiza-
tion to address URN concerns. In efforts to reduce acoustic
emissions through ship design and voyage optimization, the
implementation of a suitable data compression strategy that
extracts the most pertinent and dominant information in a
reduced-order structure is crucial for efficient data processing
and quick accessibility.

To address this challenge, it is imperative to develop a
Reduced Order Model (ROM) that mitigates both compu-
tational complexity and data capacity issues for real-time
ship optimization problems [7]. A fundamental prerequisite
for constructing an effective ROM is the assumption that
the solution manifold of the underlying problem exists in
a low-dimensional space, allowing expression as a linear
combination of a limited number of reduced basis functions.
Among the various techniques, Dynamic Mode Decompo-
sition (DMD) has been extensively utilized owing to its
versatile properties [8].

DMD has been employed in numerous studies for acoustic
analysis. A DMD-based ROM was developed using hydroa-
coustic data derived from LES of the flow around a sphere
with varying Reynolds numbers [9]. The study includes a
comparative analysis of acoustic signals and spectral analy-
sis. Additionally, DMD was applied to pressure data obtained
from DES of a radial compressor, and the results were pre-
sented through modal analysis [10]. A similar investigation
was carried out on the identification of acoustic modes and
prediction of damping in a 3D chamber with injectors [11].
However, there is a lack of literature studies focused on
developing ROMs for the hydroacoustic prediction of ship
propellers.

As a result, this paper employs DMD methodologies on
the wake flow field of a marine propeller to capture both
spatial and temporal features and utilizes the developed
model for accurate noise predictions. The structure of this
paper is as follows: initially, a concise overview of the Full
Order Model (FOM), acoustic model, and ROM (DMD),
along with their specifications, is presented in Section. III.
Section. IV provides the results of the FOM and DMD.
The discussion of reconstructed and predicted flow fields
along with their spectral and acoustic analysis are addressed.



Conclusive remarks are presented in Section. V

III. METHODOLOGY

Firstly, high-fidelity data are generated using particle
based simulations. Next, the computational domain is created
through the interpolation of the particle field obtained from
the solver and a snapshot matrix is established. The resultant
matrix of field snapshots undergoes factorization using Sin-
gular Value Decomposition (SVD), serving as the basis for
constructing DMD spaces. The linear approximation of the
dynamical system derived from this matrix is then employed
to predict the flow field data. Subsequently, the predicted
snapshots are utilized in post-processing through an acoustic
analogy to validate the accuracy of noise spectral levels in
comparison to the FOM data. The flow chart of the analysis
conducted in this paper is shown in Fig. 1

A. Full order model

The FOM used for generating the flow field data of a
marine propeller is based on the reformulated Vortex Particle
Method (rVPM) implemented within the FLOWUnsteady
framework [12]. FLOWUnsteady, an open-source meshless
Lagrangian solver, stands out for its efficiency, using less
computational resources compared to conventional CFD
solvers. The output from this solver is subsequently used
to compute broadband noise component using the equations
formulated by Brooks, Pope, and Marcolini (BPM), while
the calculation of the aeroacoustic tonal noise is carried out
utilizing the Ffowcs Williams-Hawkings (FW-H) acoustic
analogy [12].

VPM is a grid-independent technique for solving the
vorticity-form of the Navier-Stokes equations.

Dω

Dt
= (ω · ∇)u+ v∇2ω. (1)

The approach involves discretizing the vorticity field into
Lagrangian elements, referred to as vortex particles, through
a radial basis function approximation involving the basis ζσ
and coefficients Γp:

ω(x, t) ≈
∑
p

Γp(t)ζσ (x− xp(t)) (2)

Each particle consequently signifies a fluid volume car-
rying vorticity as it moves with the local velocity. For a
more comprehensive explanation of the technique, readers
are directed to reference [12]. Finally, the turbulence model
for subfilter-scale (SFS) stresses related to advection and
vortex stretching utilizes an anisotropic structural model that
represents the phenomenon of SFS vortex stretching.

B. Hydro acoustic model

Accurate methodologies for forecasting aeroacoustic noise
involve employing an acoustic analogy with the Navier-
Stokes equations. One widely-used technique for calculating
rotor noise is the Ffowcs Williams-Hawkings (FW-H) anal-
ogy, which simplifies the Navier-Stokes equations:

□̄2p′(x, t) =
∂

∂t
(ρ0unδ(f))−

∂

∂xi
(∆Pijn̂jδ(f)) , (3)

where □̄2 represents the wave-equation operator, p′ de-
notes the acoustic pressure, n̂j stands for the unit normal
vector pointing away from the blade surface, and ∆Pij =
(p− p0) δij . The initial term on the right side is a monopole
source symbolizing the volume displaced by the thickness
of a solid body, the subsequent term is a dipole source
portraying the force exerted on the fluid by that body, with
higher-order terms (quadrupole sources) being disregarded.
The tonal noise is computed using the FW-H code PSU-
WOPWOP, while broadband noise is determined using the
BPM method.

C. Reduced order model

Dynamic Mode Decomposition is a data-driven modal
decomposition method developed in [13] for investigating the
dynamics of nonlinear systems. It doesn’t need complicated
equations of the system; instead, it’s dependent on snapshots
or states of the system. DMD has the capability to recognize
spatiotemporal patterns in the data which can be used to
reconstruct the behavior of the nonlinear system using these
repetitive patterns.

Here, we provide a concise summary of the standard algo-
rithm. Let xk ∈ Rn denote a discrete dataset, where n rep-
resents the number of degrees of freedom or nodes, and k ∈
[1, . . . ,m] is the time step or snapshot number. Organize the
m snapshots into the data matrix X = [x1,x2, . . . ,xm−1]
and its temporal evolution Ẋ = [x2,x3, . . . ,xm]. Seek a
Koopman-like operator (A) minimizing ||Ẋ − AX||F for
a best-fit linear approximation. This operator is given by
A = ẊX† ∈ Rn×n, where † denotes the Moore-Penrose
pseudoinverse.

The matrix A is not explicitly resolved (due to its n2

elements). Instead, contemplate a reduced operator Ã, with
significantly lower dimensionality while preserving the spec-
tral characteristics of A. The procedure is defined as follows:

X = UΣV∗ ≈ UrΣrV
∗
r , (4)

where r ≤ (m−1) specifies the SVD truncation rank. The
expressions Ur ∈ Cn×r, Σr ∈ Cr×r, and V∗

r ∈ Cr×(m−1)

indicate the reduced SVD components. Subsequently, derive
the reduced operator Ã through an r × r projection of A
onto the modes Ur:

Ã = U∗
rAUr = U∗

rẊVrΣ
−1
r ∈ Cr×r. (5)

Symbolize the eigenspace of A as Φ (DMD modes),
unveiled through the low-rank projection of the eigenvectors
W onto the modes of Ã:

Φ = UrW, (6)

where W is obtained from the eigendecomposition of Ã:

ÃW = WΛ, (7)
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Fig. 1: Flow chart of the FOM/ROM operations performed in the present study.

and Λ is the diagonal matrix of eigenvalues of Ã (also
obtained from the eigendecomposition of A). Finally, Φ and
Λ provide a linear approximation to the solution vector x(t):

x(t) ≈ Φexp(Λt)Φ†x(0). (8)

These reconstructed fields will be used to approximate the
hydroacoustic noise based on Section.III-B and compared to
FOM.

D. Simulation case setup

This study involves the simulation of a right-handed
marine propeller with variable pitch, no rake, and
skew—specifically, the DTMB 4381 model. Detailed design
specifications are available in the cited reference [14].

The propeller simulation is conducted at an RPM of 150
for a duration of 20 revolutions. The number of time steps
per revolution is configured to 36, and VPM particles are
released at a rate of 2 particles per step. The solver’s re-
laxation parameters are carefully adjusted to ensure stability
throughout the simulation. The convergence test is presented
in the Appendix.

After computing the particle fields using FLOWUnsteady,
the construction of the fluid domain surrounding the propeller
is carried out for input into the DMD. This process involves
interpolating the particle field quantities onto a computational
grid sized 81× 101× 101. Particularly, this interpolation is
performed in the wake region of the propeller. Following this,
the 3D domain is vectorized to generate a vector comprising
826,281 elements (n), representing a single snapshot. A total
of 719 snapshots (m−1) are used to assemble the data matrix
(X).

Acoustics are calculated with a reference pressure
1µPa (pref ). The microphone to collect the pressure

fluctuations is kept at a radial distance of 1m
and reference angle of −90◦. The computation
is performed using 32 CPU cores in a desktop
computer Intel ® Xeon ® CPU E5-2699 v3 @ 2.30

GHz.

IV. RESULTS

In this section, we present the results of FOM and ROM,
accompanied by a comprehensive comparative analysis of
various flow field parameters, encompassing velocity (U )
and vorticity fields (W ). The ROM, using truncation ranks
of 10 and 20, is compared with the FOM. The tabulated
representation of cumulative energy pertaining to distinct
quantities at truncation ranks 10 and 20 is provided in Table.
I.

Quantity r = 10 r = 20
U0 0.92 0.97
U1 0.88 0.95
U2 0.88 0.95
W0 0.73 0.84
W1 0.79 0.91
W2 0.79 0.91

Table I: Cumulative energy for different quantities at 
truncation ranks 10 and 20.

Table. I clearly indicates that capturing the dynamics of
all three components of vorticity demands a greater number
of modes compared to the velocity field. Nevertheless, it
is noteworthy that at r = 20, over 90% of the energy of
the dynamics for all flow field quantities are successfully
captured.

In the forthcoming sections, the reconstructed flow field
contours are compared with FOM, and the results of the
acoustic analysis are presented. Supplementary simulations



of isosurface and corresponding comparisons are available
through the following drive link: Drive Link.

A. Flow field analysis

Fig. 2 and Fig. 3 show the comparative analysis of flow
fields of FOM and ROM. The comparison is conducted at
two key points: initially, after 3 revolutions of the propeller,
and subsequently, after 20 revolutions. Flow fields are visu-
alized across various orthogonal planes. Notably, contours in
the x-y plane are omitted as they mirror those in the z-x plane
due to radial symmetry. Additionally, the third component
of the quantities, akin to the second component, is excluded
for a concise comparison. The error fields are determined by
computing the absolute differences between the ROM and
FOM at each computation node and plotted alongside.

Overall, the velocity and vorticity are captured reasonably
well by the ROM. Upon inspecting the error fields, it is
evident that the errors are notably high during the initial stage
(3 revolutions) and exhibit a substantial decrease at the later
stage (20 revolutions). This is attributed to the fact that the
flow field has not fully reached a steady state. Furthermore,
the error field reveals that a significant portion of the error
accumulates in regions with high magnitudes of the quantity.
Moreover, the error field of vorticity is significantly higher
than that of velocity for two reasons. Firstly, the elevated
scale of vorticity potentially leads to larger errors. Secondly,
capturing the dynamics of vorticity necessitates a higher
number of modes, further contributing to these discrepancy.

A consistent trait observed is that DMD consistently
provides a more effective reconstruction of the field on the z-
y plane compared to the z-x plane across all quantities. This
tendency might be attributed to the increased complexity of
dynamics in the downstream direction in contrast to the trans-
verse direction. As a result, DMD struggles to reconstruct
accurate flow characteristics in the downstream direction
compared to the transverse direction with the same number
of modes. The results of the reconstruction substantiate that
DMD can be regarded as effective tools for reducing the
degrees of freedom in addressing hydro dynamic problems.

B. Acoustics analysis

The acoustic analysis undertaken in this study aims to
compare the pressure fluctuation signals acquired from the
FOM, as detailed in Section. III-B, with the corresponding
signals obtained from DMD ROM. The signals are measured
at a distance of 1m from the propeller, positioned at a
reference angle of 90 degrees in the downstream direction.

Fig. 4 show the overlaid noise signals from the probe and
the spectral analysis of signal. While the time series plot
of the signal exhibits good agreement with the FOM noise
signal, the power spectral density unveils intriguing results.
The prominent peaks, located at very low frequencies, are
effectively captured by the DMD signal. Specifically, with 10
modes, the spectral levels align up to a frequency of 30 Hz,
while employing 20 modes extends this correspondence close
to 100 Hz. Given that these low-frequency peaks encapsulate
the primary and most energetic characteristics of the acoustic

signal, this suggests that a moderate number of modes might
serve as a favorable compromise when the acoustic analysis
aims for a general characterization of the principal noise
features.

V. CONCLUSION

This study examined the application of data-driven dimen-
sionality reduction algorithms to a hydroacoustic dataset fea-
turing a 3D marine propeller. The propeller was numerically
modeled using the reformulated Vortex Particle Model within
the FLOWUnsteady framework. A comprehensive dataset
was presented to thoroughly assess the capacity of Dynamic
Mode Decomposition (DMD) in reconstructing flow fields.
The evaluation was based on their spectral and energetic
contents, encompassing all spatial and temporal frequencies
essential for supporting accurate predictions of noise.

The DMD model exhibited robust efficiency and precise
reconstruction of both velocity and vorticity. It successfully
captured a significant portion of spatial and temporal features
of the field. The noise levels derived from the developed
DMD model have shown notable agreement, particularly in
accurately representing the high-energy components of the
noise signal characterized by low frequencies.

VI. FUTURE WORK

Based on the convincing results, DMD based ROM model
proves valuable for addressing ship voyage optimization
problems that necessitate rapid and precise computation of
noise levels for diverse propeller configurations. Further-
more, simulations of various conventional marine propellers
can be conducted, introducing geometrical parameterization
as an additional dimension to DMD analysis. This approach
could pave the way for addressing propeller shape optimiza-
tion challenges.

APPENDIX

The convergence test for the propeller simulation is moni-
tored and presented in Fig. 5. The thrust (CT ) and torque
(CQ) coefficients are extracted from the FLOWUnsteady
solver at each timestep. The simulation attains a steady state
after approximately three revolutions.
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Fig. 3: Vorticity contours (W ), along with error fields (E(W )), for FOM and DMD reconstructions with r = 10 and 20. The
visualization depicts the initial state at the 3rd revolution and the final state at the 20th revolution.
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