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ABSTRACT:
For our project, we originally set out to accomplish two goals. Our first goal was to find a way to navigate an iRobot to

any reachable pose within a 2D grid environment, while our second goal was to program the iRobot to reach a pose while
avoiding collisions with objects within its actual environment. While our first goal was accomplished almost instantly by
our discovery of the pycreate2 library package, we did not achieve our second goal of setting up a semi-autonomously
navigating iRobot due to issues with stereo camera calibration, and the resulting complication which arises when trying
to convert a disparity map into a point cloud. Nevertheless, this report will go through the work we’ve been able to do on
stereo camera calibration, communicating sensor and actuator signal between the iRobot and a processor, and simulating
the iRobot in a 3D environment using Gazebo and ROS2.
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1 INTRODUCTION
With the prevalence of industrial robotics in the modern world, the growing need to equip robots with sophisticated map-
ping and pathfinding functionality arises from the dynamism, complexity, and diverse operational requirements of the
environments which industrial robots can be applied to. These environments require autonomous systems to be capable of
navigating with precision and agility while concurrently mapping their surroundings. The significance of such capabilities
also encompasses other important features such as workplace safety, resource optimization, and adaptability to evolving
operational tasks. However, engineering a robotic system to be able to operate in a complex and dynamic environment
involves many challenges across several domains. Some of these challenges include sensing and actuation, formulating
the environment dynamics, vision, path planning, and finally, integrating all of these moving pieces together.

In this project report, we outline what progress we’ve made in our attempt at creating an iRobot system which is ca-
pable of sensing and autonomously navigating a cluttered 3D environment. More specifically, we will touch on stereo
camera calibration, communicating sensor and actuator signal between the iRobot and a processor, and simulating the
iRobot in a 3D environment using Gazebo and ROS2.

1.1 Features of the iRobot
The iRobot Create 2 used for this project is a programmable robot based on the Roomba vacuum cleaner iRobot (2024).
It consists of a circular body with two driving wheels on the bottom. The other critical components of the iRobot are
its sensors, primarily its bumper sensor which detects collisions from obstacles, and its cliff sensors to avoid any sudden
drops. Furthermore, we planned on mounting a stereo camera on top of the iRobot which would allow the iRobot to map
its surroundings and avoid colliding with obstacles. Lastly, the iRobot has an internal processor which allows us to send
control signals and receive sensor input through the iRobot Create 2 API.

Figure 1: A diagram of the iRobot.

1.2 The stereo camera
We aimed to enable the iRobot to sense its environment by connecting it to a stereo camera (namely, the LI-OV580-
STEREO). These are a type of camera with two or more lenses, which in our case is just two lenses. These get mounted
together to create binocular vision, where the images of each lens can be combined to create a 3D image, which we use
for range imaging and obtaining distance measurements. At each timestep, our system would use images taken by both
the left and right camera and create a disparity map. Using further information about the camera, we should then be able
to derive a point cloud with coordinates within the iRobot’s coordinate frame, which we could then port over to NAV2.

2 METHODOLOGY

2.1 The iRobot control loop
Our original strategy for controlling the iRobot can be found in figure 2. One would begin by picking a point using
Gazebo for the iRobot to travel to. Then NAV2 would subsequently lay out an approximately optimal trajectory which
would follow this path. For every iteration of the outer-loop we calculate a new trajectory, whereas for every iteration of
the inner-loop we apply PD control to make our iRobot travel a fixed trajectory. We exit the control loop once the iRobot’s
current position (x0, y0) is sufficiently close to the destination (xd, yd). The iRobot keeps track of its current position
using SLAM.
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Figure 2: The iRobot control loop.

2.2 Dynamics System of iRobot
We use the kinematic design of a similar robot derived by Abbasi et al. (2020) in order to model the dynamics of the
iRobot.

Figure 3: iRobot kinematics.

The iRobot utilizes two motors that drive individual wheels which allows for movement in front and backwards
direction in addition to rotation of the robot. A kinematic diagram of the iRobot can be found in figure 3 above. We
have that vR and vL correspond to the tangential velocity of the left and right wheel while ω is the angular velocity of
the iRobot’s body with respect to the global coordinate frame, about the center of mass of the iRobot. Furthermore, D
is the distance between the two wheels and r is the radius of the individual wheels. The robot’s equations of motion
are controlled by the angular velocity of each wheel. The relationship between translational and tangential velocities are
given by

vR = r ∗ ωR

vL = r ∗ ωL

v =
(vL + vR)

2

ω =
(vL − vR)

D
.

(1)

Let x, y, and θ be the coordinates and rotation of the iRobot in the global coordinate frame. Then we have that

θ̇(t) = ω(t)

ẋ(t) = v(t) ∗ cos(θ(t))
ẏ(t) = v(t) ∗ sin(θ(t)).

(2)

It’s important to note that we’re assuming the environment in which the iRobot lives in is entirely flat, and provides
constant friction. Further, we assume that the iRobot’s wheels do not have a moment of intertia which is significant.
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Let FL and FR be the tangent forces applied to the left and right wheels from the wheels acting on the floor due to a
change in velocity (acceleration or breaking). We can further derive the robot’s translational acceleration to be equal to
a(t) = (FL+FR)

m , and the angular acceleration to be equal to ϵ(t) = D
2∗I (FL − FR) where J is the intertia coefficient of

the iRobot. Finally, we can use Lagrangian mechanics to derive the equations of motion for the iRobot which are

uL = J ∗ ϵL(t) + FL ∗ ωL(t) + FL ∗ r
uR = J ∗ ϵR(t) + FR ∗ ωR(t) + FR ∗ r

(3)

where ϵL and ϵR are the angular velocities of the left and right wheels respectively. We can now define a linear state-space
dynamics model with a state vector defined as x = [v ω ωL ωR]

T , with its time derivative being ẋ = [a ϵ ϵL ϵR]
T . Lastly,

define the control input to be u = [FL FR UL UR]
T . We can now rewrite our dynamics as

ẋ =


0 0 0 0
0 0 0 0
0 0 −F

J 0
0 0 0 −F

J

x+


1/m 1/m 0 0
−D
2J

D
2J 0 0

− r
J 0 1

J 0
0 − r

J 0 1
J

u. (4)

Originally we planned to apply a control algorithm on top of the iRobot’s dynamics model in order to get it to follow a
trajectory planned by NAV2. Unfortunately we never reached this part.

2.3 Stereo Camera and Image Processing
We aimed to enable the iRobot to detect objects in its environment by connecting it to a stereo camera (namely, the LI-
OV580-STEREO). At each timestep, our system would use images taken by both the left and right camera and create a
disparity map. Using further information about the camera, we should then be able to derive a point cloud with coordinates
within the iRobot’s coordinate frame, which we could then port over to NAV2.

2.3.1 Rectification and calibration

In order to obtain accurate point cloud information and a cleaner disparity map, it was necessary for us to calibrate the
stereo camera. The procedure for doing so involves taking dozens of pictures of a checkerboard at varying poses and
distances from the camera, and using the two sets of pictures in order to estimate several parameter matrices. In order
to accomplish this we used the Python StereoVision library which is mostly based off of OpenCV. For stereo camera
calibration in particular, the StereoVision library more or less just uses the openCV methods cv2.stereoRectify() and
cv2.stereoCalibrate(). One of the matrices computed through rectification is the 4x4 perspective transformation matrix Q,
which is crucial for obtaining a point cloud downstream. Some other matrices that are estimated include

1. cameraMatrix1 & cameraMatrix2 - Input/output camera intrinsic matrix for both cameras

2. distCoeffs1 & distCoeffs2 - Input/output vector of distortion coefficients for both cameras

3. R & T - A rotation matrix and translation vector for mapping points in the first camera’s coordinate system to the
second camera’s coordinate system

4. E - The essential matrix, which describes that geometrically relates the same corresponding point found within the
two images taken by cameras 1 and 2

5. F - The fundamental matrix, which is similar to the essential matrix but in pixel coordinates

6. R1 & R2 - Rectification transform matrices for images from cameras 1 and 2 respectively. These matrices map
points in an unrectified camera’s coordinate system to the rectified camera’s coordinate system

7. P1 & P2 - Projection matrices for cameras 1 and 2 respectively. Projects points given in rectified camera’s coordinate
system into the rectified camera’s image.

2.3.2 Disparity map and preprocessing

We used the StereoSGBM algorithm to compute a disparity map using two grayscale images given by the stereo camera.
StereoSGBM works by matching uniformly-sized blocks of pixels between two cameras, and computes the disparity of a
given block by measuring the difference in location of that block within the two corresponding image arrays. In order to
get this to work we had to do a fair amount of hyperparameter tuning in order to get a smooth map which presents closer
objects as having higher disparity values. By far the greatest improvement in the quality of the disparity map came from
applying SGBM to a downsampled version of the two images, and upsampling the disparity map to the original image
size. Lastly, a Gaussian blur was applied to the disparity map which seemed to reduce speckle noise. We attempted to use
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erosion and dilation in order to address the issue of speckle noise, but it didn’t appear to be effective. We visualized the
difference in disparity maps before rectification/preprocessing and after in figures 4 and 14 respectively.

Figure 4: The disparity map prior to camera rectification and preprocessing.

Figure 5: The disparity map after camera rectification and preprocessing.

2.3.3 Point cloud retrieval and failure

Calibrating the stereo camera turned out to be incredibly unwieldy; we took 100 checkerboard pictures with the stereo
camera (per each lens), and the calibration algorithm only accepted a little over a dozen pictures out of the 100; just by
looking at the pictures one could sense that the image quality of the stereo camera was poor and extremely sensitive to
light intensity. The issue of poor calibration spilled over into our aim of using the disparity map to generate a point cloud,
since the calibration scheme was unable to find an accurate estimate of the perspective transformation matrix. This leads
to very unrealistic point cloud estimates. The creator of the repository understood this to be a common issue, and so
provided a “generic” perspective transformation matrix matrix of the form
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Q =


1 0 0 − 1

2 ∗ width
0 −1 0 1

2 ∗ height
0 0 0 −focal length
0 0 1 0

 , (5)

where “width” and “height” refer to the number of pixels along a row and column of an image respectively. This results in
point cloud estimates which now lie in a realistic range relative to the camera coordinate system, but which at best yields
mediocre accuracy, and only for objects that are within 40 cm of the camera. We did not figure out how to port point cloud
data over to NAV2.

2.4 pycreate2
The pycreate2 library Python Package Index (2024) is a python package designed specifically for use and control of the
iRobot via an open interface protocol. It works by establishing a serial connection between the robot and the computer via
USB and allows the user to communicate with the robot by controlling its movements, reading sensor data, and program
predefined operations for the robot to follow, all done using python scripts. Some of the functionality it offers includes
moving and stopping the robot, rotation by specifying wheel speeds for differential driving as well as reading data from
the various infrared and bump sensors located on board.

Figure 6: The iRobot traverses a simple L-shaped path.

2.5 Simulation of iRobot
In this section, we describe the methodology used for simulating the iRobot using the Gazebo simulation environment.
Gazebo allows for the creation of complex three-dimensional scenarios on a computer, featuring robots, obstacles, and
various other entities. It incorporates a physics engine to simulate real-world physical phenomena such as lighting, gravity,
and inertia. This capability enables time-efficient evaluation and testing of robotic behaviors in challenging or hazardous
conditions without risking damage to the physical robot.

Gazebo functions as a 3D simulation platform, whereas ROS operates as the interfacing system for robotic control.
This methodology describes constructing a virtual environment wherein the iRobot will operate (Gazebo world), as well
as developing a precise model of the iRobot. Upon completion of these models, individual robot joints can be controlled
through teleoperation using ROS nodes, which transmit the necessary commands to the robot. Additionally, the entire
process is visualized and monitored using a visualization tool known as RViz. Fig. 7 shows the framework we used for
simulation in this project.

2.5.1 iRobot world

Figure 8 depicts the virtual environment constructed for the simulation. The world consists of an enclosed space, with
walls serving as obstacles. The robot is initially spawned at a designated start state, as illustrated in the figure. Subse-
quently, a goal state is established, which directs the robot toward its destination.

2.5.2 iRobot model

The Universal Robotic Description Format (URDF) is an XML file format used in ROS to describe the various components
of a robot. We created a URDF file comprising links and joints, constructing a model of an iRobot. The chassis is
represented by a cylinder with appropriate dimensions. Two driving wheels and two caster wheels are then attached to the
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Figure 7: Simulation framework for iRobot.

Figure 8: iRobot test world with the spawned robot.

chassis, with distances and radii approximating those of the actual iRobot. Additionally, a camera is defined as a simple
cuboid affixed to the front of the chassis. The weights of each component are estimated and integrated into the model.
Fig. 9 shows the model we used in this project.

We use the following Gazebo plugins for the sensors: (i) libgazebo ros diff drive for the differential drive, and (ii)
libgazebo ros camera for the stereo camera, which captures the depth image. Detailed configurations of these plugins can
be found in the appendix. The differential drive plugin receives cmd vel commands, allowing the robot to navigate within
the virtual environment. The camera plugin publishes both raw images and depth images in the PointCloud2 format.
These outputs are further processed for navigation purposes.

Odometry is a method used to estimate the position and orientation of a differential drive robot based on the movement
of its wheels. The odometry is calculated using the Gazebo plugin that leverages the wheel velocities to compute the
robot’s change in position and orientation.

Assume the left and right wheels have angular velocities ωL and ωR, respectively. The distances covered by each
wheel during a time interval ∆t can be computed as follows:

∆dL = RωL∆t (6)

∆dR = RωR∆t (7)

where R is the radius of the wheels.
The linear velocity v and angular velocity ω of the robot can then be calculated using the following equations:

v =
∆dL +∆dR

2∆t
(8)

ω =
∆dR −∆dL

b∆t
(9)

where b is the distance between the two wheels.
From these velocities, the robot’s change in position (∆x,∆y) and change in orientation ∆θ can be calculated:
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∆θ = ω∆t (10)

∆x = v cos(θ +
∆θ

2
)∆t (11)

∆y = v sin(θ +
∆θ

2
)∆t (12)

These incremental changes can be added to the robot’s current state (x, y, θ) to update its position and orientation:

xnew = xold +∆x (13)

ynew = yold +∆y (14)

θnew = θold +∆θ (15)

Thus, by continuously tracking wheel rotations and computing these incremental changes, odometry provides an
estimate of the robot’s trajectory over time.

The following section details the navigation of this model within the virtual environment we have made.

Figure 9: (a) iRobot URDF, and (b) iRobot.

2.6 Navigation for iRobot
The ROS 2 Navigation Stack is a comprehensive package designed to facilitate autonomous navigation for mobile robots.
It provides tools and algorithms that enable robots to move seamlessly within complex environments, avoiding obstacles
and reaching designated goals. In this project, we used Nav2 package using the depth camera sensor.

The navigation process for the iRobot in the test environment consists of the following steps:

1. The robot is manually driven in the test world to generate a map of the environment. This map is created using the
OctoMap package Hornung et al. (2013), representing the environment’s geometry, and is stored locally for future
reference.

2. Once the map is generated, the ROS 2 Navigation Stack (Nav2) is utilized, incorporating the Adaptive Monte Carlo
Localization (AMCL) algorithm Xiaoyu et al. (2018) to localize the robot within the map.

3. With the robot’s position established, a goal state is defined. The Navigation Stack ROS 2 Navigation Project
(2024) then employs Dijkstra’s algorithm to calculate an optimal path from the current position to the specified
goal, allowing the robot to navigate effectively.

2.6.1 Mapping using Octomap

OctoMap Hornung et al. (2013) is a 3D mapping framework for robotic navigation and exploration. It models occupied
and free spaces, with unknown areas implicitly encoded. The map can be continuously updated, incorporating new sensor
data to adapt to changes in the environment and allowing for contributions from multiple robots. OctoMap also dynami-
cally expands as needed, offering multi-resolution capabilities for both coarse and fine-grained planning and visualization.
Additionally, it efficiently stores map data in memory and on disk, supporting compressed files for easy exchange between
robots.
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In this project, we use the depth camera as our sensor input in the format of PointCloud2 and create 3D voxels based
on the height of the points in the cloud. To prevent the floor from being considered an obstacle, we filter out all points
with a zero Z-axis value relative to the robot’s base frame. Additionally, we remove points from the point cloud that are
located more than 2 meters away from the camera, effectively filtering out distant obstacles.

Figure 10: Mapping using Octomap.

2.6.2 Localization using AMCL

Adaptive Monvte Carlo Localization (AMCL) Xiaoyu et al. (2018) is a probabilistic localization method widely used
in robotics, particularly in ROS. AMCL works by integrating point cloud sensor data with an existing map of the en-
vironment, using a particle filter approach to estimate the robot’s position and orientation. The algorithm continuously
updates its estimates by sampling particles and weighting them based on their consistency with the observed sensor data.
This process allows AMCL to provide accurate and robust localization even in dynamic environments. By effectively
combining sensor readings and map information, AMCL ensures precise positioning, facilitating autonomous navigation,
mapping, and various robotic tasks. Fig. 11 demonstrates this.

Figure 11: Localization demonstrated using AMCL.

2.6.3 Navigation using Nav2

Once localized, the navigation stack publishes global and local cost maps. The global cost map is generated using the
pre-existing static map, with parameters such as robot radius and buffer layers adjusted to suit our needs. The navigation
stack utilizes this cost map to compute an optimal path using Dijkstra’s algorithm. Additionally, a local cost map is
generated, which acts as a controller, guiding the robot to follow the global path.

3 RESULTS
The results encompass the stereo camera image processing, mapping of the test world in simulation, and navigation of the
iRobot.
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As outlined in the methodology, the mapping is performed using the OctoMap package, with manual control via
keyboard. Fig. 12 shows the resulting map of the test world. The 3D voxels are accurately positioned according to the
received point cloud data. A 2D map is generated as an image, where white pixels denote free space and black pixels
indicate obstacles. This map is subsequently exported as YAML and PGM files, which are utilized by the navigation
stack.

Figure 12: Mapping of test environment using iRobot. The mapping video can be accessed here.

Subsequently, we launch the navigation stack, providing the map YAML file as a parameter. This initiates a series of
nodes responsible for publishing both the global and local cost maps. Additionally, the Behavior Tree server is activated,
which determines the actions for the robot. Fig. 13 shows the resulting global and local maps.

However, we encountered an issue with completing the stack. Despite the navigation stack functioning correctly,
providing the goal pose causes the Behavior Tree Navigator to fail and crash with a segmentation error. We used the GDB
utility to monitor the logs, but a solution to this problem has yet to be identified.

Furthermore, we managed to do the best we could in obtaining point-cloud data from the stereo camera using OpenCV,
although it was quite poor in quality. And lastly, we managed to send signals and gather sensor data from the iRobot using
pycreate2.

Figure 13: iRobot navigation.

4 DISCUSSION AND CONCLUSION
This project on iRobot’s semi-autonomous navigation was largely successful. We achieved numerous milestones, yet
encountered challenges both in our code implementation, image processing and overall approach.
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Figure 14: The disparity map after camera rectification and preprocessing.

4.1 Achievements:
1. Dockerized Workspace: We created a Dockerized workspace and posted it on GitHub (Link) for public access.

This workspace can be run on any system, with setup instructions provided in the README file.

2. iRobot URDF Model: We developed an iRobot model in URDF, incorporating the necessary links, joints, and
sensors through Gazebo plugins.

3. Custom Test World: We designed a custom test world to run our simulations and implement our algorithms.

4. Mapping with OctoMap: We coded custom launch files for mapping the environment using OctoMap, utilizing
point cloud data to represent the environment.

5. Navigation Stack Parameters: We tuned and modified the parameters of the navigation stack to suit our robot,
replacing conventional LaserScan data with point cloud data from the camera.

6. Navigation Launch File: We developed a launch file for the navigation of the iRobot within a static map, enabling
autonomous movement along pre-defined paths.

7. Controlling the iRobot: We successfully used the pycreate2 package for controlling the iRobot, including testing
its functionality and sensors.

8. Stereo Camera: We managed to significantly improve the disparity map quality for the stereo camera over its
initial performance.

9. Model Dynamics: We found a kinematics model which accurately models the iRobot and which could be used for
control.

4.2 Shortcomings:
1. Camera Quality: We encountered difficulties translating the camera’s images into point cloud data, primarily due

to the camera’s quality. The stereo images were of low quality (including noise and distorted images), resulting in
unwieldy calibration and unusable point cloud data.

2. Bumper Sensor as Point Cloud: Initially, we attempted to create a point cloud using the bumper sensor, im-
plementing a node that converts the bumper state message into a point cloud for mapping the environment.
However, we realized this approach was inadequate for localization and abandoned it.

3. Raspberry Pi Issues: We faced difficulties with the iRobot’s Raspberry Pi, which wouldn’t boot up. After buying
a new SD card, new cables, and accessories, we still didn’t couldn’t manage to install the OS onto the Pi and get it
to run. Consequently, we were unable to design a fully wireless autonomous system as envisioned. This issue was
overcome by connecting the robot via a USB connection to a portable computer.
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4. Lidar Sensor Access: We didn’t have access to a LiDAR sensor, which would have significantly eased the mapping
and localization processes.

4.3 Alternative Approaches and Suggestions:
1. ORB-SLAM with a Monocular Camera: Rather than relying on the stereo camera, we could use a monocular

camera, such as a smartphone camera, to implement ORB-SLAM (Oriented FAST and Rotated BRIEF Simulta-
neous Localization and Mapping) Mur-Artal et al. (2015). This approach would enable mapping and localization
using a single camera sensor, simplifying the hardware setup.

2. LiDAR and Camera Integration: If access to a LiDAR sensor is available, it can be employed for both localization
and mapping, providing a standardized and reliable solution. Furthermore, incorporating a camera in addition to
the LiDAR would enhance functionality, allowing for a more comprehensive perception of the environment.

5 STATEMENT OF CONTRIBUTION
Thiago: Stereo camera setup and results, dynamics model, control loop, pycreate2, pictures and diagrams, raspberryPi
troubleshooting.

Akash: Developed the irobot workspace with Docker; Created iRobot urdf model; implemented depth camera, bumper
sensor, and motor driver; created Gazebo custom world; developed code for mapping using octomap; implemented lo-
calization using point cloud data and navigation using Nav2; Made video simulation of mapping; Wrote report sections
including the simulation, navigation, results, and discussion and conclusion; Made figures for methodology

Selim: iRobot setup and control using pycreate2, stereo camera setup.

Nicholas: Various sections of the report such as stereo camera calibration, iRobot features, results, and discussion.

Daniel: Dynamics model, project report.

6 APPENDIX I - Running iRobot Simulation
The code for our project can be accessed on our GitHub workspace (Link). Our workspace is dockerized, allowing you
to create an image and build it using the provided Dockerfile. This installs ROS 2, the navigation stack, and all necessary
packages. The installation instructions can be found in our documentation available at this Google Drive link.

To launch the simulation, use the following command:

ros2 launch create_bringup create_2_gazebo.launch.xml

This launch file first starts the Gazebo simulation with the test world passed as an argument. Next, it runs the
robot state publisher and joint state publisher, which publish the transformation matrices of the robot.
The robot is then spawned into the world. Finally, RViz2 is launched to visualize all components.

7 APPENDIX II - Running iRobot OctoMapping
This section outlines the steps for mapping the environment using the iRobot. Ensure that the iRobot simulation is running
as described in the previous section. Next, clone the OctoMap server package into the src directory of the workspace
and build it. Then, launch the OctoMap server using our custom launch file:

ros2 launch create_bringup create_2_octomap.launch.py

This launch file ensures that the point cloud topic names are consistent and that topic remapping is performed for
convenience. To map the entire environment, run the following command to control the robot:

ros2 run teleop_twist_keyboard teleop_twist_keyboard

Once the map is complete, we use another custom launch file to save the map as YAML and PGM files using the
nav map server. Since the OctoMap saver node only stores 3D voxels as a .bt file, we created our own launch file
for saving the map. This can be launched with the following command:

ros2 launch create_bringup create_2_savemap.launch.py
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https://github.com/akash-venkateshwaran/irobot_workspace
https://docs.google.com/document/d/1pFRzsGzR3lSUHwIE4FDcrudx3o6xebWhfAufLUeAnkM/edit?usp=sharing


8 APPENDIX III - OpenCV Scripts for Stereo Camera
The Python scripts for calibrating and retrieving a disparity map on a real-time stereo camera feed can be found at

https://github.com/Thiagodcv/stereo-camera

Please note that this implementation is partly based off of

https://github.com/Matchstic/depthmapper/tree/main
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